injective homomorphism - ορισμός. Τι είναι το injective homomorphism
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι injective homomorphism - ορισμός

MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
  • surjective]].

Homomorphy         
·noun Similarity of form; resemblance in external characters, while widely different in fundamental structure; resemblance in geometric ground form. ·see Homophyly, Promorphology.
homomorphic         
¦ adjective technical of the same or similar form.
Derivatives
homomorphically adverb
Homomorphic         
·adj ·Alt. of Homomorphous.

Βικιπαίδεια

Homomorphism

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra.

The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory.

A homomorphism may also be an isomorphism, an endomorphism, an automorphism, etc. (see below). Each of those can be defined in a way that may be generalized to any class of morphisms.